## Multifunction Calibrator - Model 8080



- Current Calibrator to 20 A
- Voltage Calibrator to 1000 V
- Power Calibrator to 2400 W
- Exceptional Uncertainties
- Extremely User Friendly
- NIST Traceable

#### **Description**

The Multifunction Calibrator Model 8080 functions as a Voltage Calibrator, Current Calibrator, Power Calibrator, Resistance Calibrator, Capacitance Calibrator and a Thermocouple Calibrator. Having very low uncertainties, it is ideal as a standard of these electric quantities in calibration laboratories. It also has the feature of supplying several different waveshapes in additional to the traditional sinusoidal output. This feature makes it ideal for testing meters which are true rms reading or crest factor sensitive. These signals are also suitable for the basic calibration of oscilloscopes. The calibrator has the capability of measuring temperature with TC and RTD temperature sensors. A built-in multimeter can be used independently or in simultaneous operation with the calibrator output.

#### **Basic Functions**

In the Voltage Calibrator mode, the Multifunction Calibrator generates DC/AC voltages up to 1000 V and in the Current Calibrator mode it generates DC/AC currents up to 20 A . Using a 50-turn transformer, the AC current range can be extended to 500 A. The best accuracy of the calibrator on DC voltage ranges is 0.0035%, on AC voltage ranges 0.03%, on DC current ranges 0.013% and on AC current ranges 0.055%. The frequency range is from 20 Hz to 50 kHz. The calibrator can generate periodic non-harmonic signals with a defined crest factor. Such signals can be used to test the sensitivity of multimeters to distorted signals. The Multifunction Calibrator simulates both resistance and capacitance. The resistance range extends to 50 MOhm and the capacitance range is from 1 nF to 50  $\mu F$ . The precision of both quantities is sufficient for the calibration of commonly used hand-held multimeters. The basic accuracy of the resistance ranges and capacitance ranges is 0.03%, and 0.5% respectively. The resistance calibration may be used with both DC and AC signals up to 1 kHz.

The frequency function of the calibrator makes it possible to generate a square wave signal with adjustable and calibrated duty cycle, frequency and amplitude in the range from 1 mV to 10 V in the frequency band up to 10 kHz. In the HF mode a square wave signal up to 20 MHz with a very low risetime can be generated. The frequency function is suitable for the calibrations of corresponding frequency ranges of multimeters, and for calibration of the channel sensitivities and time bases of the oscilloscopes.

In the Power Calibration mode, the Model 8080 can be used as a source to calibrate DC and single-phase AC watt meters, power analyzers, and energy meters. In this mode, the output voltage can be set up to 240 V, the output current up to 10A, and the the power factor in range from -1 to +1 in the frequency band from 20 Hz to 400 Hz. The current capability of the voltage output is 30 mA so that analog watt meters, which usually have lower input impedances at their voltage input, may be calibrated.. For calibration of thermometers and temperature regulators, the temperature function is simulated by the Multifunction Calibrator. It is able to simulate all commonly used Pt and Ni resistance sensors as well as TC sensors of the R, S, B, J, T, E, K and N types. Compensation of the TC cold junction is made either by entering a value from the keyboard, or automatically by measuring the ambient temperature with a Pt-100 sensor. The precision of the simulated resistance and TC sensors depends on set value and type of the sensor. For resistance sensors the uncertainty band is in the range from 0.04 °C to 0.5 °C, for TC sensors from 0.4°C to 4.0 °C.

#### **Built-in multimeter**

An internal multimeter with basic ranges of 20 mA, 200 mV, 10 V and 2 kOhm is a standard feature off the Multifunction Calibrator. With an accuracy of 0.01%, it enables the user to measure the output signals of various types of transducers. With external strain gauge sensors, pressure, torsion, strength, etc. can be measured and displayed.

#### **Calibrator - Tester**

The Multifunction Calibrator can be used both as a precision signal source for a device under test and as a meter to measure the resultant voltages generated by the device. Programmable capability of the calibrator enables the user to set 10 steps of a testing procedure. The testing can run automatically, and after it is completed, PASS/FAIL status is displayed. With the testing function, isolated relay contacts activated by the FAIL indicator, make it possible to control other equipment.

#### **User friendly**

The Model 8080 Calibrator is equipped with a number of other functions which make it extremely easy to use. Among them, are the capability to set relative deviations from the actual value of the selected output signal, the continuous displaying of the output signal uncertainty, and the internal calibration procedure. The large, easy to read, comprehensive luminescent display contains all of the necessary information to set up any of the Multifunction Calibrator's functions. In addition, frequently used functions have specific keys assigned to them. The calibrator is equipped with the IEEE-488.2 interface and with the RS-232 serial interface.

# **Specifications**

## DC voltage

| (1 digit in 2,000,000 resolution) |                    |  |
|-----------------------------------|--------------------|--|
| range % of value + % of range     |                    |  |
| 0 μV - 20 mV                      | 0.05 + 0.0 + 10 μV |  |
| 20 mV - 200 mV                    | 0.01 + 0.0 + 10 μV |  |
| 200 mV - 2 V                      | 0.003 + 0.0008     |  |
| 2 V - 20 V                        | 0.003 + 0.0005     |  |
| 20 V - 240 V                      | 0.003 + 0.0005     |  |
| 240 V - 1000 V                    | 0.005 + 0.005      |  |

## AC voltage

| (1 digit in 2,000,000 resolution) |                            |                            |  |
|-----------------------------------|----------------------------|----------------------------|--|
| range                             | % of value<br>+ % of range | % of value<br>+ % of range |  |
|                                   | 20 Hz - 10 kHz             | 10 kHz - 50 kHz            |  |
| 1 mV - 20 mV                      | 0.20 + 0.05 + 20 μV        | 0.20 + 0.10 + 20 μV        |  |
| 20mV - 200mV                      | 0.1 + 0.03 + 20 μV         | 0.15 + 0.05 + 20 μV        |  |
| 200 mV - 2 V                      | 0.025 + 0.005              | 0.05 + 0.01                |  |
| 2 V - 20 V                        | 0.025 + 0.005              | 0.05 + 0.03                |  |
| 20 V - 240 V                      | 0.025 + 0.010              |                            |  |
| 240 V - 1000 V                    | 0.03 + 0.02 *              |                            |  |

<sup>\*</sup> valid for f < 1000 Hz

## AC current

| (1 digit in 2,000,000 resolution) |                            |                            |  |
|-----------------------------------|----------------------------|----------------------------|--|
| range                             | % of value<br>+ % of range | % of value<br>+ % of range |  |
|                                   | 20 Hz - 1 kHz              | 1 kHz - 5 kHz              |  |
| 1 μΑ - 200 μΑ                     | 0.15 + 0.0 + 20 nA         | 0.30 + 0.10 + 20 nA        |  |
| 200 μA - 2 mA                     | 0.07 + 0.01                | 0.20 + 0.05                |  |
| 2 mA - 20 mA                      | 0.05 + 0.005               | 0.20 + 0.05                |  |
| 20 mA - 200 mA                    | 0.05 + 0.005               | 0.20 + 0.05                |  |
| 200 mA - 2 A                      | 0.05 + 0.005               |                            |  |
| 2 A - 20 A                        | 0.10 + 0.03                |                            |  |

When option 130-50 Current coil is used, add uncertainty 0.3 % of the set current to the value specified in the above table. Output current is multiplied by factor 50.

## Resistance (4-wire)

| (1 digit in 20,000 resolution) |                |  |
|--------------------------------|----------------|--|
| range                          | % of value     |  |
| 0 Ohm - 100 Ohm                | 0.03 + 10 mOhm |  |
| 100 Ohm - 400 Ohm              | 0.015          |  |
| 400 Ohm - 2 kOhm               | 0.015          |  |
| 2 kOhm - 10 kOhm               | 0.015          |  |
| 10 kOhm - 40 kOhm              | 0.015          |  |
| 40 kOhm - 200 kOhm             | 0.015          |  |
| 200 kOhm - 1 MOhm              | 0.05           |  |
| 1 MOhm - 4 MOhm                | 0.1            |  |
| 4 MOhm - 20 MOhm               | 0.2            |  |
| 20 MOhm - 50 MOhm              | 0.5            |  |

Maximum allowed voltage on the load is 8 Vpk.

## Capacitance (4-wire)

| (1 digit in 20,000 resolution) |             |  |
|--------------------------------|-------------|--|
| range                          | % of value  |  |
| 900 pF - 2.5 nF                | 0.5 + 15 pF |  |
| 2.5 nF - 10 nF                 | 0.5 + 5 pF  |  |
| 10 nF - 50 nF                  | 0.5         |  |
| 50 nF - 250 nF                 | 0.5         |  |
| 250 nF - 1 μF                  | 0.5         |  |
| 1 μF - 3.5 μF                  | 1.0         |  |
| 3.5 μF - 5 μF                  | 1.0         |  |
| 5 μF - 10 μF                   | 1.5         |  |
| 10 μF - 50 μF                  | 2.0         |  |

Maximum allowed voltage on the load is 8 Vpk.

## Frequency

| (1 digit in 2,000,000 resolution) |                               |                 |  |  |
|-----------------------------------|-------------------------------|-----------------|--|--|
| type                              | type PWM (pos, neg, sym) HF * |                 |  |  |
| range                             | 0.1 Hz - 100 kHz              | 0.1 Hz - 20 MHz |  |  |
| frequency unc. (%)                | 0.005                         | 0.005           |  |  |
| amplitude                         | 1 mV - 10 V                   | 2 V             |  |  |
| amplitude unc. (%)                | 0.1                           | 10              |  |  |
| ratio                             | 0.00 - 1.00                   |                 |  |  |
| ratio unc.(%)                     | 0.05                          |                 |  |  |

<sup>\*</sup> Rise time < 5 ns

## DC power, energy

| (1 digit in 2,000,000 resolution)      |                |                   |
|----------------------------------------|----------------|-------------------|
| quantity range % of value + % of range |                |                   |
| voltage                                | 200 mV - 240 V | see voltage table |
| current                                | 2 mA - 10      |                   |

## AC power, energy

| (1 digit in 2,000,000 resolution) |                |                   |  |
|-----------------------------------|----------------|-------------------|--|
| quantity                          | range          | uncertainty       |  |
| voltage                           | 200 mV - 240 V | see voltage table |  |
| current                           | 2 mA - 10 A    | 0.05 % + 0.01 %   |  |
| frequency                         | 40 Hz - 400 Hz | 0.005             |  |
| power factor                      | -1 - +1        | 0.005 - 0.0005    |  |
| phase                             | 0 - 360 °      | 0.15 ° - 0.25 °   |  |

Setting time in energy mode 10 s - 1999 s.
Uncertainty of AC power depends on set value of voltage, current, phase. The best uncertainty is 0.08 %. Uncertainty in energy mode depends on set value of voltage, current, phase and time. The best uncertainty is 0.09 %.

### Resistance temperature sensor simulation

| types                   | Pt 1.385, Pt 1.392, Ni |
|-------------------------|------------------------|
| range of R0             | 20 Ohm - 2 kOhm        |
| range of temperature    | -200 °C - 850 °C       |
| temperature uncertainty | 0.04 °C - 0.5 °C       |
| temperature scale       | ITS 90, PTS 68         |

## Thermocouple simulation

| types                   | R, S, B, J, T, E, K, N |
|-------------------------|------------------------|
| range of temperature    | -250 °C - 1820 °C      |
| temperature uncertainty | 0.4 °C - 4.0 °C        |
| temperature scale       | ITS 90, PTS 68         |

#### Multimeter

| quantity                    | range             | uncertainty                  |
|-----------------------------|-------------------|------------------------------|
| VDC (DC voltage)            | 0 - ± 12 V        | 0.01 % + 100 μV              |
| mVDC (DC voltage)           | 0 - ± 2000 mV     | 0.01 % + 10 μV               |
| mADC (DC current)           | 0 - ± 25 mA       | 0.02 % + 1 μA                |
| FREQ (Frequency)            | 1 Hz - 15 kHz     | 0.005 %                      |
| R4W (Resistance)            | 0 - 2 kOhm        | 0.02 % + 100 mOhm            |
| TRTD (RTD sensors)          | -150 - +600 °C    | 0.1 °C                       |
| TTC (TC sensors)            | -250 - +1820 °C   | 0.4 - 4 °C                   |
| SGS (strain gauge sensor) * | depends on sensor | 0.01 % + 10 μV + sensor unc. |

 $<sup>^{\</sup>star}$  Supplying voltage 2 to 10 V DC, max. current 40 mA, input resistance > 100 MOhm sensitivity 0.5 - 100 mV/V, displayed unit settable

Dimensions: 17.7" X 18.8" X 5.9"

Weight: 53 lbs

#### . Accessories included

| Power line cable                                                                  | 1 pc  |
|-----------------------------------------------------------------------------------|-------|
| Operation manual                                                                  | 1 pc  |
| Option 10/11 Test cable                                                           | 2 pcs |
| Option 40                                                                         | 1 pc  |
| Test cable for built-in multimeter, 2 banana terminals for DC voltage and current |       |
| measurement.                                                                      |       |



3243 RT. 112, STE 1, Medford, NY 11763 Tel: 631-698-3350 FAX: 631-698-3356 E-mail: info@clarke-hess.com